6. A continuous uniform distribution on the interval \([ 0 , k ]\) has mean \(\frac { k } { 2 }\) and variance \(\frac { k ^ { 2 } } { 12 }\). A random sample of three independent variables \(X _ { 1 } , X _ { 2 }\) and \(X _ { 3 }\) is taken from this distribution.
- Show that \(\frac { 2 } { 3 } X _ { 1 } + \frac { 1 } { 2 } X _ { 2 } + \frac { 5 } { 6 } X _ { 3 }\) is an unbiased estimator for \(k\).
An unbiased estimator for \(k\) is given by \(\hat { k } = a X _ { 1 } + b X _ { 2 }\) where \(a\) and \(b\) are constants.
- Show that \(\operatorname { Var } ( \hat { k } ) = \left( a ^ { 2 } - 2 a + 2 \right) \frac { k ^ { 2 } } { 6 }\)
- Hence determine the value of \(a\) and the value of \(b\) for which \(\hat { k }\) has minimum variance, and calculate this minimum variance.