Edexcel S4 2004 June — Question 5

Exam BoardEdexcel
ModuleS4 (Statistics 4)
Year2004
SessionJune
TopicDiscrete Random Variables
TypeCalculating bias of estimator

5. (a) Explain briefly what you understand by
  1. an unbiased estimator,
  2. a consistent estimator.
    of an unknown population parameter \(\theta\). From a binomial population, in which the proportion of successes is \(p , 3\) samples of size \(n\) are taken. The number of successes \(X _ { 1 } , X _ { 2 }\), and \(X _ { 3 }\) are recorded and used to estimate \(p\).
    (b) Determine the bias, if any, of each of the following estimators of \(p\). $$\begin{aligned} & \hat { p } _ { 1 } = \frac { X _ { 1 } + X _ { 2 } + X _ { 3 } } { 3 n }
    & \hat { p } _ { 2 } = \frac { X _ { 1 } + 3 X _ { 2 } + X _ { 3 } } { 6 n }
    & \hat { p } _ { 3 } = \frac { 2 X _ { 1 } + 3 X _ { 2 } + X _ { 3 } } { 6 n } \end{aligned}$$ (c) Find the variance of each of these estimators.
    (d) State, giving a reason, which of the three estimators for \(p\) is
  3. the best estimator,
  4. the worst estimator.