AQA S3 2014 June — Question 5 4 marks

Exam BoardAQA
ModuleS3 (Statistics 3)
Year2014
SessionJune
Marks4
TopicDiscrete Random Variables
TypeJoint distribution with marginal/conditional probabilities

5 The numbers of daily morning operations, \(X\), and daily afternoon operations, \(Y\), in an operating theatre of a small private hospital can be modelled by the following bivariate probability distribution.
\multirow{2}{*}{}Number of morning operations ( \(\boldsymbol { X }\) )
23456\(\mathbf { P } ( \boldsymbol { Y } = \boldsymbol { y } )\)
\multirow{3}{*}{Number of afternoon operations ( \(\boldsymbol { Y }\) )}30.000.050.200.200.050.50
40.000.150.100.050.000.30
50.050.050.100.000.000.20
\(\mathrm { P } ( \boldsymbol { X } = \boldsymbol { x } )\)0.050.250.400.250.051.00
    1. State why \(\mathrm { E } ( X ) = 4\) and show that \(\operatorname { Var } ( X ) = 0.9\).
    2. Given that $$\mathrm { E } ( Y ) = 3.7 , \operatorname { Var } ( Y ) = 0.61 \text { and } \mathrm { E } ( X Y ) = 14.4$$ calculate values for \(\operatorname { Cov } ( X , Y )\) and \(\rho _ { X Y }\).
  1. Calculate values for the mean and the variance of:
    1. \(T = X + Y\);
    2. \(\quad D = X - Y\).
      [0pt] [4 marks]