A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Statistics
Poisson Distribution
Q7
AQA S3 2011 June — Question 7
Exam Board
AQA
Module
S3 (Statistics 3)
Year
2011
Session
June
Topic
Poisson Distribution
Type
Proving Poisson properties from first principles
7
The random variable \(X\) has a Poisson distribution with \(\mathrm { E } ( X ) = \lambda\).
Prove, from first principles, that \(\mathrm { E } ( X ( X - 1 ) ) = \lambda ^ { 2 }\).
Hence deduce that \(\operatorname { Var } ( X ) = \mathrm { E } ( X )\).
The random variable \(Y\) has a Poisson distribution with \(\mathrm { E } ( Y ) = 2.5\). Given that \(Z = 4 Y + 30\) :
show that \(\operatorname { Var } ( Z ) = \mathrm { E } ( Z )\);
give a reason why the distribution of \(Z\) is not Poisson.
\includegraphics[max width=\textwidth, alt={}]{fa3bf9d6-f064-4214-acff-d8b88c33a81e-19_2486_1714_221_153}
\includegraphics[max width=\textwidth, alt={}]{fa3bf9d6-f064-4214-acff-d8b88c33a81e-20_2486_1714_221_153}
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8