AQA S3 2011 June — Question 7

Exam BoardAQA
ModuleS3 (Statistics 3)
Year2011
SessionJune
TopicPoisson Distribution
TypeProving Poisson properties from first principles

7
  1. The random variable \(X\) has a Poisson distribution with \(\mathrm { E } ( X ) = \lambda\).
    1. Prove, from first principles, that \(\mathrm { E } ( X ( X - 1 ) ) = \lambda ^ { 2 }\).
    2. Hence deduce that \(\operatorname { Var } ( X ) = \mathrm { E } ( X )\).
  2. The random variable \(Y\) has a Poisson distribution with \(\mathrm { E } ( Y ) = 2.5\). Given that \(Z = 4 Y + 30\) :
    1. show that \(\operatorname { Var } ( Z ) = \mathrm { E } ( Z )\);
    2. give a reason why the distribution of \(Z\) is not Poisson.
      \includegraphics[max width=\textwidth, alt={}]{fa3bf9d6-f064-4214-acff-d8b88c33a81e-19_2486_1714_221_153}
      \includegraphics[max width=\textwidth, alt={}]{fa3bf9d6-f064-4214-acff-d8b88c33a81e-20_2486_1714_221_153}