Edexcel S2 — Question 7

Exam BoardEdexcel
ModuleS2 (Statistics 2)
TopicContinuous Probability Distributions and Random Variables
TypeDirect variance calculation from pdf

7. A continuous random variable \(X\) has probability density function \(\mathrm { f } ( x )\) given by $$\begin{array} { l l } \mathrm { f } ( x ) = \frac { 2 x } { 3 } & 0 \leq x < 1
\mathrm { f } ( x ) = 1 - \frac { x } { 3 } & 1 \leq x \leq 3
\mathrm { f } ( x ) = 0 & \text { otherwise. } \end{array}$$
  1. Sketch the graph of \(\mathrm { f } ( x )\) for all \(x\).
  2. Find the mean of \(X\).
  3. Find the standard deviation of \(X\).
  4. Show that the cumulative distribution function of \(X\) is given by $$\mathrm { F } ( x ) = \frac { x ^ { 2 } } { 3 } \quad 0 \leq x < 1$$ and find \(\mathrm { F } ( x )\) for \(1 \leq x \leq 3\).