AQA S2 2016 June — Question 4

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2016
SessionJune
TopicContinuous Uniform Random Variables
TypeMeasurement error modeling

4 A digital thermometer measures temperatures in degrees Celsius. The thermometer rounds down the actual temperature to one decimal place, so that, for example, 36.23 and 36.28 are both shown as 36.2 . The error, \(X ^ { \circ } \mathrm { C }\), resulting from this rounding down can be modelled by a rectangular distribution with the following probability density function. $$f ( x ) = \left\{ \begin{array} { l c } k & 0 \leqslant x \leqslant 0.1
0 & \text { otherwise } \end{array} \right.$$
  1. State the value of \(k\).
  2. Find the probability that the error resulting from this rounding down is greater than \(0.03 ^ { \circ } \mathrm { C }\).
    1. State the value for \(\mathrm { E } ( X )\).
    2. Use integration to find the value for \(\mathrm { E } \left( X ^ { 2 } \right)\).
    3. Hence find the value for the standard deviation of \(X\).
      \includegraphics[max width=\textwidth, alt={}]{72aa9867-88c6-4b1b-97f7-bf4ba2da4031-12_1355_1707_1352_153}