3 The continuous random variable \(X\) has a cumulative distribution function defined by
$$\mathrm { F } ( x ) = \left\{ \begin{array} { c l }
0 & x < - 5
\frac { x + 5 } { 20 } & - 5 \leqslant x \leqslant 15
1 & x > 15
\end{array} \right.$$
- Show that, for \(- 5 \leqslant x \leqslant 15\), the probability density function, \(\mathrm { f } ( x )\), of \(X\) is given by \(\mathrm { f } ( x ) = \frac { 1 } { 20 }\).
(1 mark) - Find:
- \(\mathrm { P } ( X \geqslant 7 )\);
- \(\mathrm { P } ( X \neq 7 )\);
- \(\mathrm { E } ( X )\);
- \(\mathrm { E } \left( 3 X ^ { 2 } \right)\).