AQA S2 2010 June — Question 3

Exam BoardAQA
ModuleS2 (Statistics 2)
Year2010
SessionJune
TopicContinuous Uniform Random Variables
TypeFind constant k in PDF

3 The continuous random variable \(X\) has a rectangular distribution defined by $$\mathrm { f } ( x ) = \begin{cases} k & - 3 k \leqslant x \leqslant k
0 & \text { otherwise } \end{cases}$$
    1. Sketch the graph of f.
    2. Hence show that \(k = \frac { 1 } { 2 }\).
  1. Find the exact numerical values for the mean and the standard deviation of \(X\).
    1. Find \(\mathrm { P } \left( X \geqslant - \frac { 1 } { 4 } \right)\).
    2. Write down the value of \(\mathrm { P } \left( X \neq - \frac { 1 } { 4 } \right)\).
      \includegraphics[max width=\textwidth, alt={}]{c31c5c67-834e-42ce-b4af-555890c393d5-07_2484_1709_223_153}