AQA C4 2016 June — Question 8 10 marks

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2016
SessionJune
Marks10
TopicDifferential equations

8 It is given that \(\theta = \tan ^ { - 1 } \left( \frac { 3 x } { 2 } \right)\).
  1. By writing \(\theta = \tan ^ { - 1 } \left( \frac { 3 x } { 2 } \right)\) as \(2 \tan \theta = 3 x\), use implicit differentiation to show that \(\frac { \mathrm { d } \theta } { \mathrm { d } x } = \frac { k } { 4 + 9 x ^ { 2 } }\), where \(k\) is an integer.
    [0pt] [3 marks]
  2. Hence solve the differential equation $$9 y \left( 4 + 9 x ^ { 2 } \right) \frac { \mathrm { d } y } { \mathrm {~d} x } = \operatorname { cosec } 3 y$$ given that \(x = 0\) when \(y = \frac { \pi } { 3 }\). Give your answer in the form \(\mathrm { g } ( y ) = \mathrm { h } ( x )\).
    [0pt] [7 marks]