AQA C4 2012 January — Question 6

Exam BoardAQA
ModuleC4 (Core Mathematics 4)
Year2012
SessionJanuary
TopicFactor & Remainder Theorem
TypeShow equation reduces to polynomial

6
  1. Use the Factor Theorem to show that \(4 x - 3\) is a factor of $$16 x ^ { 3 } + 11 x - 15$$
  2. Given that \(x = \cos \theta\), show that the equation $$27 \cos \theta \cos 2 \theta + 19 \sin \theta \sin 2 \theta - 15 = 0$$ can be written in the form $$16 x ^ { 3 } + 11 x - 15 = 0$$
  3. Hence show that the only solutions of the equation $$27 \cos \theta \cos 2 \theta + 19 \sin \theta \sin 2 \theta - 15 = 0$$ are given by \(\cos \theta = \frac { 3 } { 4 }\).