| Exam Board | AQA |
| Module | C3 (Core Mathematics 3) |
| Year | 2011 |
| Session | June |
| Topic | Modulus function |
7
- On separate diagrams:
- sketch the curve with equation \(y = | 3 x + 3 |\);
- sketch the curve with equation \(y = \left| x ^ { 2 } - 1 \right|\).
- Solve the equation \(| 3 x + 3 | = \left| x ^ { 2 } - 1 \right|\).
- Hence solve the inequality \(| 3 x + 3 | < \left| x ^ { 2 } - 1 \right|\).
\(8 \quad\) Use the substitution \(u = 1 + 2 \tan x\) to find
$$\int \frac { 1 } { ( 1 + 2 \tan x ) ^ { 2 } \cos ^ { 2 } x } d x$$