A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q2
AQA C3 2010 June — Question 2
Exam Board
AQA
Module
C3 (Core Mathematics 3)
Year
2010
Session
June
Topic
Reciprocal Trig & Identities
2
The diagram shows the graph of \(y = \sec x\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
\includegraphics[max width=\textwidth, alt={}, center]{33ca7e6d-b9eb-46be-b5b0-c5685212d7ff-2_816_1447_1087_287}
The point \(A\) on the curve is where \(x = 0\). State the \(y\)-coordinate of \(A\).
Sketch, on the axes given on page 3, the graph of \(y = | \sec 2 x |\) for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Solve the equation \(\sec x = 2\), giving all values of \(x\) in degrees in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Solve the equation \(\left| \sec \left( 2 x - 10 ^ { \circ } \right) \right| = 2\), giving all values of \(x\) in degrees in the interval \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
\includegraphics[max width=\textwidth, alt={}, center]{33ca7e6d-b9eb-46be-b5b0-c5685212d7ff-3_839_1475_317_351}
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8