A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure and Mechanics
Exponential Equations & Modelling
Q9
AQA C2 2015 June — Question 9
5 marks
Exam Board
AQA
Module
C2 (Core Mathematics 2)
Year
2015
Session
June
Marks
5
Topic
Exponential Equations & Modelling
9
Use logarithms to solve the equation \(2 ^ { 3 x } = 5\), giving your value of \(x\) to three significant figures.
Given that \(\log _ { a } k - \log _ { a } 2 = \frac { 2 } { 3 }\), express \(a\) in terms of \(k\).
By using the binomial expansion, or otherwise, express \(( 1 + 2 x ) ^ { 3 }\) in ascending powers of \(x\).
It is given that $$\log _ { 2 } \left[ ( 1 + 2 n ) ^ { 3 } - 8 n \right] = \log _ { 2 } ( 1 + 2 n ) + \log _ { 2 } \left[ 4 \left( 1 + n ^ { 2 } \right) \right]$$ By forming and solving a suitable quadratic equation, find the possible values of \(n\). [5 marks] \includegraphics[max width=\textwidth, alt={}, center]{24641e66-b73b-4323-98c8-349727151aba-20_1581_1714_1126_153}
\includegraphics[max width=\textwidth, alt={}, center]{24641e66-b73b-4323-98c8-349727151aba-24_2488_1728_219_141}
This paper
(9 questions)
View full paper
Q1
4
Q2
4
Q3
Q4
Q5
Q6
Q7
3
Q8
5
Q9
5