AQA C2 2012 January — Question 6

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2012
SessionJanuary
TopicArithmetic Sequences and Series

6 An arithmetic series has first term \(a\) and common difference \(d\). The sum of the first 25 terms of the series is 3500 .
  1. Show that \(a + 12 d = 140\).
  2. The fifth term of this series is 100 . Find the value of \(d\) and the value of \(a\).
  3. The \(n\)th term of this series is \(u _ { n }\). Given that $$33 \left( \sum _ { n = 1 } ^ { 25 } u _ { n } - \sum _ { n = 1 } ^ { k } u _ { n } \right) = 67 \sum _ { n = 1 } ^ { k } u _ { n }$$ find the value of \(\sum _ { n = 1 } ^ { k } u _ { n }\).
    (3 marks)