AQA C2 2006 January — Question 4

Exam BoardAQA
ModuleC2 (Core Mathematics 2)
Year2006
SessionJanuary
TopicSine and Cosine Rules

4 The triangle \(A B C\), shown in the diagram, is such that \(A C = 8 \mathrm {~cm} , C B = 12 \mathrm {~cm}\) and angle \(A C B = \theta\) radians. The area of triangle \(A B C = 20 \mathrm {~cm} ^ { 2 }\).
  1. Show that \(\theta = 0.430\) correct to three significant figures.
  2. Use the cosine rule to calculate the length of \(A B\), giving your answer to two significant figures.
  3. The point \(D\) lies on \(C B\) such that \(A D\) is an arc of a circle centre \(C\) and radius 8 cm . The region bounded by the arc \(A D\) and the straight lines \(D B\) and \(A B\) is shaded in the diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{9fee4b6f-06e2-4ed8-8835-33ef33b98c94-3_424_894_1434_555} Calculate, to two significant figures:
    1. the length of the \(\operatorname { arc } A D\);
    2. the area of the shaded region.