AQA C1 2016 June — Question 4 3 marks

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2016
SessionJune
Marks3
TopicFactor & Remainder Theorem
TypeDirect remainder then factorise

4 The polynomial \(\mathrm { p } ( x )\) is given by \(\mathrm { p } ( x ) = x ^ { 3 } - 5 x ^ { 2 } - 8 x + 48\).
    1. Use the Factor Theorem to show that \(x + 3\) is a factor of \(\mathrm { p } ( x )\).
    2. Express \(\mathrm { p } ( x )\) as a product of three linear factors.
    1. Use the Remainder Theorem to find the remainder when \(\mathrm { p } ( x )\) is divided by \(x - 2\).
    2. Express \(\mathrm { p } ( x )\) in the form \(( x - 2 ) \left( x ^ { 2 } + b x + c \right) + r\), where \(b , c\) and \(r\) are integers. [3 marks]