AQA C1 2013 January — Question 5

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2013
SessionJanuary
TopicFactor & Remainder Theorem
TypeDirect remainder then factorise

5 The polynomial \(\mathrm { p } ( x )\) is given by $$\mathrm { p } ( x ) = x ^ { 3 } - 4 x ^ { 2 } - 3 x + 18$$
  1. Use the Remainder Theorem to find the remainder when \(\mathrm { p } ( x )\) is divided by \(x + 1\).
    1. Use the Factor Theorem to show that \(x - 3\) is a factor of \(\mathrm { p } ( x )\).
    2. Express \(\mathrm { p } ( x )\) as a product of linear factors.
  2. Sketch the curve with equation \(y = x ^ { 3 } - 4 x ^ { 2 } - 3 x + 18\), stating the values of \(x\) where the curve meets the \(x\)-axis.