3. In this question, the function \(\operatorname { INT } ( X )\) is the largest integer less than or equal to \(X\).
For example,
$$\begin{aligned}
\mathrm { INT } ( 5.7 ) & = 5
\mathrm { INT } ( 8 ) & = 8
\mathrm { INT } ( - 2.3 ) & = - 3
\end{aligned}$$
Consider the following algorithm.
Step 1 Input \(N\)
Step 2 Calculate \(A = N \div 10\)
Step 3 Let \(B = \operatorname { INT } ( A )\)
Step 4 Calculate \(C = B \times 10\)
Step 5 Calculate \(D = N - C\)
Step 6 Output \(D\)
Step \(7 \quad\) Replace \(N\) by \(B\)
Step 8 If \(N = 0\) then STOP, otherwise go back to Step 2
- Complete the table in the answer book, using \(N = 4217\), to show the results obtained at each step of the algorithm.
- Explain how the output values of the algorithm relate to the original input \(N\), where \(N\) is any positive integer.