1.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e0c89aba-9d2e-469b-8635-d513df0b65a4-02_611_515_333_397}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e0c89aba-9d2e-469b-8635-d513df0b65a4-02_611_515_333_1146}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
- Define the term 'bipartite graph'.
Figure 1 shows the possible allocations of six people, A , B , C , D , E and F , to six activities, \(1,2,3\), 4, 5 and 6
Figure 2 shows an initial matching.
- Starting from this initial matching, use the maximum matching algorithm to find a complete matching. You should list the alternating path that you use, and state your complete matching.