Edexcel S3 2023 June — Question 4

Exam BoardEdexcel
ModuleS3 (Statistics 3)
Year2023
SessionJune
TopicChi-squared distribution

  1. It is suggested that the delay, in hours, of certain flights from a particular country may be modelled by the continuous random variable, \(T\), with probability density function
$$f ( t ) = \left\{ \begin{array} { c l } \frac { 2 } { 25 } t & 0 \leqslant t < 5
0 & \text { otherwise } \end{array} \right.$$
  1. Show that for \(0 \leqslant a \leqslant 4\) $$P ( a \leqslant T < a + 1 ) = \frac { 1 } { 25 } ( 2 a + 1 )$$ A random sample of 150 of these flights is taken. The delays are summarised in the table below.
    Delay ( \(\boldsymbol { t }\) hours)Frequency
    \(0 \leqslant t < 1\)10
    \(1 \leqslant t < 2\)13
    \(2 \leqslant t < 3\)24
    \(3 \leqslant t < 4\)35
    \(4 \leqslant t < 5\)68
  2. Test, at the \(5 \%\) significance level, whether the given probability density function is a suitable model for these delays.
    You should state your hypotheses, expected frequencies, test statistic and the critical value used.