Edexcel S2 2011 June — Question 7

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2011
SessionJune
TopicContinuous Probability Distributions and Random Variables
TypeSymmetry property of PDF

  1. The continuous random variable \(X\) has probability density function given by
$$f ( x ) = \left\{ \begin{array} { c c } \frac { 3 } { 32 } ( x - 1 ) ( 5 - x ) & 1 \leqslant x \leqslant 5
0 & \text { otherwise } \end{array} \right.$$
  1. Sketch \(\mathrm { f } ( x )\) showing clearly the points where it meets the \(x\)-axis.
  2. Write down the value of the mean, \(\mu\), of \(X\).
  3. Show that \(\mathrm { E } \left( X ^ { 2 } \right) = 9.8\)
  4. Find the standard deviation, \(\sigma\), of \(X\). The cumulative distribution function of \(X\) is given by $$\mathrm { F } ( x ) = \left\{ \begin{array} { c c } 0 & x < 1
    \frac { 1 } { 32 } \left( a - 15 x + 9 x ^ { 2 } - x ^ { 3 } \right) & 1 \leqslant x \leqslant 5
    1 & x > 5 \end{array} \right.$$ where \(a\) is a constant.
  5. Find the value of \(a\).
  6. Show that the lower quartile of \(X , q _ { 1 }\), lies between 2.29 and 2.31
  7. Hence find the upper quartile of \(X\), giving your answer to 1 decimal place.
  8. Find, to 2 decimal places, the value of \(k\) so that $$\mathrm { P } ( \mu - k \sigma < X < \mu + k \sigma ) = 0.5$$