Edexcel S2 2009 June — Question 6

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2009
SessionJune
TopicContinuous Uniform Random Variables
TypeMaximum or minimum of uniforms

6. The three independent random variables \(A , B\) and \(C\) each has a continuous uniform distribution over the interval \([ 0,5 ]\).
  1. Find \(\mathrm { P } ( A > 3 )\).
  2. Find the probability that \(A , B\) and \(C\) are all greater than 3 . The random variable \(Y\) represents the maximum value of \(A , B\) and \(C\). The cumulative distribution function of \(Y\) is $$\mathrm { F } ( y ) = \begin{cases} 0 & y < 0
    \frac { y ^ { 3 } } { 125 } & 0 \leqslant y \leqslant 5
    1 & y > 5 \end{cases}$$
  3. Find the probability density function of \(Y\).
  4. Sketch the probability density function of \(Y\).
  5. Write down the mode of \(Y\).
  6. Find \(\mathrm { E } ( Y )\).
  7. Find \(\mathrm { P } ( Y > 3 )\).