Edexcel S2 2001 June — Question 6

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2001
SessionJune
TopicCumulative distribution functions
TypeCDF to PDF derivation

6. The continuous random variable X has cumulative distribution function \(\mathrm { F } ( x )\) given by $$\mathrm { F } ( x ) = \left\{ \begin{array} { l r } 0 , & x < 1
\frac { 1 } { 27 } \left( - x ^ { 3 } + 6 x ^ { 2 } - 5 \right) , & 1 \leq x \leq 4
1 , & x > 4 \end{array} \right.$$
  1. Find the probability density function \(\mathrm { f } ( x )\).
  2. Find the mode of \(X\).
  3. Sketch \(\mathrm { f } ( x )\) for all values of \(x\).
  4. Find the mean \(\mu\) of X .
  5. Show that \(\mathrm { F } ( \mu ) > 0.5\).
  6. Show that the median of \(X\) lies between the mode and the mean.