2 The continuous random variable \(X\) has cumulative distribution function given by
$$\mathrm { F } ( x ) = \left\{ \begin{array} { l r }
0 & x < - k
\frac { x + k } { 4 k } & - k \leqslant x \leqslant 3 k
1 & x > 3 k
\end{array} \right.$$
where \(k\) is a positive constant.
- Specify fully, in terms of \(k\), the probability density function of \(X\)
- Write down, in terms of \(k\), the value of \(\mathrm { E } ( X )\)
- Show that \(\operatorname { Var } ( X ) = \frac { 4 } { 3 } k ^ { 2 }\)
- Find, in terms of \(k\), the value of \(\mathrm { E } \left( 3 X ^ { 2 } \right)\)