Edexcel S2 2016 January — Question 6

Exam BoardEdexcel
ModuleS2 (Statistics 2)
Year2016
SessionJanuary
TopicContinuous Probability Distributions and Random Variables
TypeFind expectation E(X)

6. A continuous random variable \(X\) has probability density function $$f ( x ) = \begin{cases} a x ^ { 2 } + b x & 1 \leqslant x \leqslant 7
0 & \text { otherwise } \end{cases}$$ where \(a\) and \(b\) are constants.
  1. Show that \(114 a + 24 b = 1\) Given that \(a = \frac { 1 } { 90 }\)
  2. use algebraic integration to find \(\mathrm { E } ( X )\)
  3. find the cumulative distribution function of \(X\), specifying it for all values of \(x\)
  4. find \(\mathrm { P } ( X > \mathrm { E } ( X ) )\)
  5. use your answer to part (d) to describe the skewness of the distribution.