The random variable \(Z \sim \mathrm {~N} ( 0,1 )\)
\(A\) is the event \(Z > 1.1\)
\(B\) is the event \(Z > - 1.9\)
\(C\) is the event \(- 1.5 < Z < 1.5\)
Find
\(\mathrm { P } ( A )\)
\(\mathrm { P } ( B )\)
\(\mathrm { P } ( C )\)
\(\mathrm { P } ( A \cup C )\)
The random variable \(X\) has a normal distribution with mean 21 and standard deviation 5
Find the value of \(w\) such that \(\mathrm { P } ( X > w \mid X > 28 ) = 0.625\)