Edexcel S1 2011 January — Question 6

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2011
SessionJanuary
TopicDiscrete Probability Distributions
TypeProbabilities in table form with k

  1. The discrete random variable \(X\) has the probability distribution
\(x\)1234
\(\mathrm { P } ( X = x )\)\(k\)\(2 k\)\(3 k\)\(4 k\)
  1. Show that \(k = 0.1\) Find
  2. \(\mathrm { E } ( X )\)
  3. \(\mathrm { E } \left( X ^ { 2 } \right)\)
  4. \(\operatorname { Var } ( 2 - 5 X )\) Two independent observations \(X _ { 1 }\) and \(X _ { 2 }\) are made of \(X\).
  5. Show that \(\mathrm { P } \left( X _ { 1 } + X _ { 2 } = 4 \right) = 0.1\)
  6. Complete the probability distribution table for \(X _ { 1 } + X _ { 2 }\)
    \(y\)2345678
    \(\mathrm { P } \left( X _ { 1 } + X _ { 2 } = y \right)\)0.010.040.100.250.24
  7. Find \(\mathrm { P } \left( 1.5 < X _ { 1 } + X _ { 2 } \leqslant 3.5 \right)\)