- The blood pressures, \(p\) mmHg, and the ages, \(t\) years, of 7 hospital patients are shown in the table below.
| Patient | A | B | C | D | E | F | G |
| \(t\) | 42 | 74 | 48 | 35 | 56 | 26 | 60 |
| \(p\) | 98 | 130 | 120 | 88 | 182 | 80 | 135 |
$$\left[ \sum t = 341 , \sum p = 833 , \sum t ^ { 2 } = 18181 , \sum p ^ { 2 } = 106397 , \sum t p = 42948 \right]$$
- Find \(S _ { p p } , S _ { t p }\) and \(S _ { t t }\) for these data.
- Calculate the product moment correlation coefficient for these data.
- Interpret the correlation coefficient.
- On the graph paper on page 17, draw the scatter diagram of blood pressure against age for these 7 patients.
- Find the equation of the regression line of \(p\) on \(t\).
- Plot your regression line on your scatter diagram.
- Use your regression line to estimate the blood pressure of a 40 year old patient.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Question 6 continued}
\includegraphics[alt={},max width=\textwidth]{a0058e3c-046f-4271-aee4-33a74c719e2a-12_2071_1729_386_157}
\end{figure}