Edexcel S1 2005 January — Question 3

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2005
SessionJanuary
TopicBivariate data
TypeDraw scatter diagram from data

3. The following table shows the height \(x\), to the nearest cm , and the weight \(y\), to the nearest kg , of a random sample of 12 students.
\(x\)148164156172147184162155182165175152
\(y\)395956774477654980727052
  1. On graph paper, draw a scatter diagram to represent these data.
  2. Write down, with a reason, whether the correlation coefficient between \(x\) and \(y\) is positive or negative. The data in the table can be summarised as follows. $$\Sigma x = 1962 , \quad \Sigma y = 740 , \quad \Sigma y ^ { 2 } = 47746 , \quad \Sigma x y = 122783 , \quad S _ { x x } = 1745 .$$
  3. Find \(S _ { x y }\). The equation of the regression line of \(y\) on \(x\) is \(y = - 106.331 + b x\).
  4. Find, to 3 decimal places, the value of \(b\).
  5. Find, to 3 significant figures, the mean \(\bar { y }\) and the standard deviation \(s\) of the weights of this sample of students.
  6. Find the values of \(\bar { y } \pm 1.96 s\).
  7. Comment on whether or not you think that the weights of these students could be modelled by a normal distribution.