Edexcel S1 2021 June — Question 3

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2021
SessionJune
TopicData representation
TypeEstimate mean and standard deviation from frequency table

  1. A random sample of 100 carrots is taken from a farm and their lengths, \(L \mathrm {~cm}\), recorded. The data are summarised in the following table.
Length, \(L\) cmFrequency, fClass mid point, \(\boldsymbol { x } \mathbf { c m }\)
\(5 \leqslant L < 8\)56.5
\(8 \leqslant L < 10\)139
\(10 \leqslant L < 12\)1611
\(12 \leqslant L < 15\)2513.5
\(15 \leqslant L < 20\)3017.5
\(20 \leqslant L < 28\)1124
A histogram is drawn to represent these data.
The bar representing the class \(5 \leqslant L < 8\) is 1.5 cm wide and 1 cm high.
  1. Find the width and height of the bar representing the class \(15 \leqslant L < 20\)
  2. Use linear interpolation to estimate the median length of these carrots.
  3. Estimate
    1. the mean length of these carrots,
    2. the standard deviation of the lengths of these carrots. A supermarket will only buy carrots with length between 9 cm and 22 cm .
  4. Estimate the proportion of carrots from the farm that the supermarket will buy. Any carrots that the supermarket does not buy are sold as animal feed. The farm makes a profit of 2.2 pence on each carrot sold to the supermarket, a profit of 0.8 pence on each carrot longer than 22 cm and a loss of 1.2 pence on each carrot shorter than 9 cm .
  5. Find an estimate of the mean profit per carrot made by the farm.