Edexcel S1 2020 June — Question 5

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2020
SessionJune
TopicLinear regression
TypeCalculate from summary statistics

  1. A large company rents shops in different parts of the country. A random sample of 10 shops was taken and the floor area, \(x\) in \(10 \mathrm {~m} ^ { 2 }\), and the annual rent, \(y\) in thousands of dollars, were recorded.
    The data are summarised by the following statistics
$$\sum x = 900 \quad \sum x ^ { 2 } = 84818 \quad \sum y = 183 \quad \sum y ^ { 2 } = 3434$$ and the regression line of \(y\) on \(x\) has equation \(y = 6.066 + 0.136 x\)
  1. Use the regression line to estimate the annual rent in dollars for a shop with a floor area of \(800 \mathrm {~m} ^ { 2 }\)
  2. Find \(\mathrm { S } _ { y y }\) and \(\mathrm { S } _ { x x }\)
  3. Find the product moment correlation coefficient between \(y\) and \(x\). An 11th shop is added to the sample. The floor area is \(900 \mathrm {~m} ^ { 2 }\) and the annual rent is 15000 dollars.
  4. Use the formula \(\mathrm { S } _ { x y } = \sum ( x - \bar { x } ) ( y - \bar { y } )\) to show that the value of \(\mathrm { S } _ { x y }\) for the 11 shops will be the same as it was for the original 10 shops.
  5. Find the new equation of the regression line of \(y\) on \(x\) for the 11 shops. The company is considering renting a larger shop with area of \(3000 \mathrm {~m} ^ { 2 }\)
  6. Comment on the suitability of using the new regression line to estimate the annual rent. Give a reason for your answer.