OCR Further Additional Pure 2023 June — Question 9

Exam BoardOCR
ModuleFurther Additional Pure (Further Additional Pure)
Year2023
SessionJune
TopicGroups

9 The set \(C\) consists of the set of all complex numbers excluding 1 and - 1 . The operation ⊕ is defined on the elements of \(C\) by \(\mathrm { a } \oplus \mathrm { b } = \frac { \mathrm { a } + \mathrm { b } } { \mathrm { ab } + 1 }\) where \(\mathrm { a } , \mathrm { b } \in \mathrm { C }\).
  1. Determine the identity element of \(C\) under ⊕.
  2. For each element \(x\) in \(C\) show that it has an inverse element in \(C\).
  3. Show that \(\oplus\) is associative on \(C\).
  4. Explain why \(( C , \oplus )\) is not a group.
  5. Find a subset, \(D\), of \(C\) such that \(( D , \oplus )\) is a group of order 3 . \section*{END OF QUESTION PAPER} OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (\href{http://www.ocr.org.uk}{www.ocr.org.uk}) after the live examination series.
    If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
    For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.
    OCR is part of Cambridge University Press \& Assessment, which is itself a department of the University of Cambridge.