4 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations
$$\mathbf { r } = - 2 \mathbf { i } - 3 \mathbf { j } - 5 \mathbf { k } + \lambda ( - 4 \mathbf { i } + 3 \mathbf { j } + 5 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = 2 \mathbf { i } - 2 \mathbf { j } + 3 \mathbf { k } + \mu ( 2 \mathbf { i } - 3 \mathbf { j } + \mathbf { k } )$$
respectively.
- Find the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
The plane \(\Pi\) contains \(l _ { 1 }\) and the point with position vector \(- \mathbf { i } - 3 \mathbf { j } - 4 \mathbf { k }\). - Find an equation of \(\Pi\), giving your answer in the form \(a x + b y + c z = d\).