OCR Further Mechanics 2024 June — Question 4

Exam BoardOCR
ModuleFurther Mechanics (Further Mechanics)
Year2024
SessionJune
TopicCircular Motion 2

4 A particle, \(P\), of mass 6 kg is attached to one end of a light inextensible rod of length 2.4 m . The other end of the rod is smoothly hinged at a fixed point \(O\) and the rod is free to rotate in any direction. Initially, \(P\) is at rest, vertically below \(O\), when it is projected horizontally with a speed of \(12 \mathrm {~ms} ^ { - 1 }\). It subsequently describes complete vertical circles with \(O\) as the centre.
\includegraphics[max width=\textwidth, alt={}, center]{05b479a4-4087-4332-924b-43b1aedbb4f2-3_611_517_536_246} The angle that the rod makes with the downward vertical through \(O\) at each instant is denoted by \(\theta\) and \(A\) is the point which \(P\) passes through where \(\theta = 40 ^ { \circ }\) (see diagram).
  1. Find the tangential acceleration of \(P\) at \(A\), stating its direction.
  2. Determine the radial acceleration of \(P\) at \(A\), stating its direction.
  3. Find the magnitude of the force in the rod when \(P\) is at \(A\), stating whether the rod is in tension or compression. The motion is now stopped when \(P\) is at \(A\), and \(P\) is then projected in such a way that it now describes horizontal circles at a constant speed with \(\theta = 40 ^ { \circ }\) (see diagram).
    \includegraphics[max width=\textwidth, alt={}, center]{05b479a4-4087-4332-924b-43b1aedbb4f2-3_403_524_1877_242}
  4. Find the speed of \(P\).
  5. Explain why, wherever \(P\) 's motion is initiated from and whatever its initial velocity, it is not possible for \(P\) to describe horizontal circles at constant speed with \(\theta = 90 ^ { \circ }\).