8 The continuous random variable \(X\) has probability density function
$$f ( x ) = \begin{cases} \frac { k } { x ^ { n } } & x \geqslant 1
0 & \text { otherwise } \end{cases}$$
where \(n\) and \(k\) are constants and \(n\) is an integer greater than 1 .
- Find \(k\) in terms of \(n\).
- When \(n = 4\), find the cumulative distribution function of \(X\).
- Hence determine \(\mathrm { P } ( X > 7 \mid X > 5 )\) when \(n = 4\).
- Determine the values of \(n\) for which \(\operatorname { Var } ( X )\) is not defined.