OCR Further Statistics 2019 June — Question 9

Exam BoardOCR
ModuleFurther Statistics (Further Statistics)
Year2019
SessionJune
TopicCumulative distribution functions
TypeCDF of transformed variable

9 The continuous random variable \(T\) has cumulative distribution function
\(F ( t ) = \begin{cases} 0 & t < 0 ,
1 - \mathrm { e } ^ { - 0.25 t } & t \geqslant 0 . \end{cases}\)
  1. Find the cumulative distribution function of \(2 T\).
  2. Show that, for constant \(k , \mathrm { E } \left( \mathrm { e } ^ { k t } \right) = \frac { 1 } { 1 - 4 k }\). You should state with a reason the range of values of \(k\) for which this result is valid.
  3. \(\quad T\) is the time before a certain event occurs. Show that the probability that no event occurs between time \(T = 0\) and time \(T = \theta\) is the same as the probability that the value of a random variable with the distribution \(\operatorname { Po } ( \lambda )\) is 0 , for a certain value of \(\lambda\). You should state this value of \(\lambda\) in terms of \(\theta\). \section*{END OF QUESTION PAPER}