OCR Further Pure Core 1 2022 June — Question 3

Exam BoardOCR
ModuleFurther Pure Core 1 (Further Pure Core 1)
Year2022
SessionJune
TopicComplex Numbers Argand & Loci

3 In this question you must show detailed reasoning.
  1. Find the roots of the equation \(2 z ^ { 2 } - 2 z + 5 = 0\). The loci \(\mathrm { C } _ { 1 }\) and \(\mathrm { C } _ { 2 }\) are given by \(| z | = | z - 2 \mathrm { i } |\) and \(| z - 2 | = \sqrt { 5 }\) respectively.
    1. Sketch on a single Argand diagram the loci \(\mathrm { C } _ { 1 }\) and \(\mathrm { C } _ { 2 }\), showing any intercepts with the imaginary axis.
    2. Indicate, by shading on your Argand diagram, the region $$\{ z : | z | \leqslant | z - 2 i | \} \cap \{ z : | z - 2 | \leqslant \sqrt { 5 } \} .$$
    1. Show that both of the roots of the equation \(2 z ^ { 2 } - 2 z + 5 = 0\) satisfy \(| z - 2 | < \sqrt { 5 }\).
    2. State, with a reason, which root of the equation \(2 z ^ { 2 } - 2 z + 5 = 0\) satisfies \(| z | < | z - 2 i |\).
  2. On the same Argand diagram as part (b), indicate the positions of the roots of the equation \(2 z ^ { 2 } - 2 z + 5 = 0\).