OCR Further Discrete AS 2023 June — Question 4

Exam BoardOCR
ModuleFurther Discrete AS (Further Discrete AS)
Year2023
SessionJune
TopicGroups

4 Graph G is a simply connected Eulerian graph with 4 vertices.
    1. Explain why graph G cannot be a complete graph.
    2. Determine the number of arcs in graph G, explaining your reasoning.
    3. Show that graph G is a bipartite graph. Graph H is a digraph with 4 vertices and no undirected arcs. The adjacency matrix below shows the number of arcs that directly connect each pair of vertices in digraph H . From \begin{table}[h]
      \captionsetup{labelformat=empty} \caption{To}
      ABCD
      A0101
      B0020
      C2101
      D0110
      \end{table}
    1. Write down a feature of the adjacency matrix that shows that H has no loops.
    2. Find the number of \(\operatorname { arcs }\) in H .
    3. Draw a possible digraph H .
    4. Show that digraph H is semi-Eulerian by writing down a suitable trail.