10 Bilal and Mayon play a zero-sum game.
The game is represented by the following pay-off matrix for Bilal, where \(x\) is an integer.
| Mayon | |
| \cline { 2 - 5 } | Strategy | \(\mathbf { M } _ { \mathbf { 1 } }\) | \(\mathbf { M } _ { \mathbf { 2 } }\) | \(\mathbf { M } _ { \mathbf { 3 } }\) |
| Bilal | \(\mathbf { B } _ { \mathbf { 1 } }\) | - 2 | - 1 | 1 |
| \cline { 2 - 5 } | \(\mathbf { B } _ { \mathbf { 2 } }\) | 4 | - 3 | 1 |
| \cline { 2 - 5 } | \(\mathbf { B } _ { \mathbf { 3 } }\) | - 1 | \(x\) | 0 |
The game has a stable solution.
10
- Show that there is only one possible value for \(x\)
Fully justify your answer.
13
10 - State the value of the game for Bilal.