5 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have equations \(\mathbf { r } = \mathbf { i } + 4 \mathbf { j } - \mathbf { k } + \lambda ( \mathbf { j } - 2 \mathbf { k } )\) and \(\mathbf { r } = - 3 \mathbf { i } + 4 \mathbf { j } + \mu ( \mathbf { i } + 2 \mathbf { j } + \mathbf { k } )\) respectively.
- Find the shortest distance between \(l _ { 1 }\) and \(l _ { 2 }\).
The plane \(\Pi _ { 1 }\) contains \(l _ { 1 }\) and is parallel to \(l _ { 2 }\). - Obtain an equation of \(\Pi _ { 1 }\) in the form \(p x + q y + r z = s\).
\includegraphics[max width=\textwidth, alt={}, center]{7eb2abb1-68f4-4cc8-8314-f436906d6c4e-10_2715_40_144_2007} - The point \(( 1,1,1 )\) lies on the plane \(\Pi _ { 2 }\).
It is given that the line of intersection of the planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) passes through the point ( \(0,0,2\) ) and is parallel to the vector \(\mathbf { i } + 4 \mathbf { j } - 3 \mathbf { k }\).
Obtain an equation of \(\Pi _ { 2 }\) in the form \(a x + b y + c z = d\).