6 The curve \(C\) has equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } + \mathrm { ax } + 1 } { \mathrm { x } + 2 }\), where \(a > \frac { 5 } { 2 }\).
- Find the equations of the asymptotes of \(C\).
- Show that \(C\) has no stationary points.
- Sketch \(C\), stating the coordinates of the point of intersection with the \(y\)-axis and labelling the asymptotes.
- Sketch the curve with equation \(\mathrm { y } = \left| \frac { \mathrm { x } ^ { 2 } + \mathrm { ax } + 1 } { \mathrm { x } + 2 } \right|\).
- On your sketch in part (i), draw the line \(\mathrm { y } = \mathrm { a }\).
- It is given that \(\left| \frac { \mathrm { x } ^ { 2 } + \mathrm { ax } + 1 } { \mathrm { x } + 2 } \right| < \mathrm { a }\) for \(- 5 - \sqrt { 14 } < x < - 3\) and \(- 5 + \sqrt { 14 } < x < 3\).
Find the value of \(a\).