CAIE Further Paper 1 2024 June — Question 6

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2024
SessionJune
TopicCurve Sketching
TypeSolve |f(x)| > k using sketch

6 The curve \(C\) has equation \(\mathrm { y } = \frac { \mathrm { x } ^ { 2 } + \mathrm { ax } + 1 } { \mathrm { x } + 2 }\), where \(a > \frac { 5 } { 2 }\).
  1. Find the equations of the asymptotes of \(C\).
  2. Show that \(C\) has no stationary points.
  3. Sketch \(C\), stating the coordinates of the point of intersection with the \(y\)-axis and labelling the asymptotes.
    1. Sketch the curve with equation \(\mathrm { y } = \left| \frac { \mathrm { x } ^ { 2 } + \mathrm { ax } + 1 } { \mathrm { x } + 2 } \right|\).
    2. On your sketch in part (i), draw the line \(\mathrm { y } = \mathrm { a }\).
    3. It is given that \(\left| \frac { \mathrm { x } ^ { 2 } + \mathrm { ax } + 1 } { \mathrm { x } + 2 } \right| < \mathrm { a }\) for \(- 5 - \sqrt { 14 } < x < - 3\) and \(- 5 + \sqrt { 14 } < x < 3\). Find the value of \(a\).