CAIE Further Paper 1 2023 June — Question 2

Exam BoardCAIE
ModuleFurther Paper 1 (Further Paper 1)
Year2023
SessionJune
TopicSequences and series, recurrence and convergence

2
  1. Use standard results from the list of formulae (MF19) to show that $$\sum _ { r = 1 } ^ { n } \left( 6 r ^ { 2 } + 6 r - 5 \right) = a n ^ { 3 } + b n ^ { 2 } + c n$$ where \(a\), \(b\) and \(c\) are integers to be determined.
  2. Use the method of differences to find \(\sum _ { r = 1 } ^ { n } \frac { 6 r ^ { 2 } + 6 r - 5 } { r ^ { 2 } + r }\) in terms of \(n\).
  3. Find also \(\sum _ { r = n + 1 } ^ { 2 n } \frac { 6 r ^ { 2 } + 6 r - 5 } { r ^ { 2 } + r }\) in terms of \(n\).