OCR MEI Paper 2 Specimen — Question 15 5 marks

Exam BoardOCR MEI
ModulePaper 2 (Paper 2)
SessionSpecimen
Marks5
TopicHypothesis test of a normal distribution

15 A quality control department checks the lifetimes of batteries produced by a company. The lifetimes, \(x\) minutes, for a random sample of 80 'Superstrength' batteries are shown in the table below.
Lifetime\(160 \leq x < 165\)\(165 \leq x < 168\)\(168 \leq x < 170\)\(170 \leq x < 172\)\(172 \leq x < 175\)\(175 \leq x < 180\)
Frequency5142021164
  1. Estimate the proportion of these batteries which have a lifetime of at least 174.0 minutes.
  2. Use the data in the table to estimate
    • the sample mean,
    • the sample standard deviation.
    The data in the table on the previous page are represented in the following histogram, Fig 15: \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e9f3a5f3-210b-453d-9ff5-8518340f5689-10_728_1577_312_315} \captionsetup{labelformat=empty} \caption{Fig. 15}
    \end{figure} A quality control manager models the data by a Normal distribution with the mean and standard deviation you calculated in part (b).
  3. Comment briefly on whether the histogram supports this choice of model.
    1. Use this model to estimate the probability that a randomly selected battery will have a lifetime of more than 174.0 minutes.
    2. Compare your answer with your answer to part (a). The company also manufactures 'Ultrapower' batteries, which are stated to have a mean lifetime of 210 minutes.
  4. A random sample of 8 Ultrapower batteries is selected. The mean lifetime of these batteries is 207.3 minutes. Carry out a hypothesis test at the \(5 \%\) level to investigate whether the mean lifetime is as high as stated. You should use the following hypotheses \(\mathrm { H } _ { 0 } : \mu = 210 , \mathrm { H } _ { 1 } : \mu < 210\), where \(\mu\) represents the population mean for Ultrapower batteries. You should assume that the population is Normally distributed with standard deviation 3.4.
    [0pt] [5]