OCR MEI Paper 2 2022 June — Question 14 5 marks

Exam BoardOCR MEI
ModulePaper 2 (Paper 2)
Year2022
SessionJune
Marks5
TopicArea Under & Between Curves

14 Fig. 14.1 shows the curve with equation \(y = \frac { 1 } { 1 + x ^ { 2 } }\), together with 5 rectangles of equal width. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{57007d39-abb0-475e-9ed8-03021fa1273b-10_940_1557_331_246} \captionsetup{labelformat=empty} \caption{Fig. 14.1}
\end{figure} Fig. 14.2 shows the coordinates of the points \(\mathrm { A } , \mathrm { B } , \mathrm { C } , \mathrm { D } , \mathrm { E }\) and F .
PointABCDEF
\(x\)00.20.40.60.81
\(y\)10.961540.862070.735290.609760.5
\section*{Fig. 14.2}
  1. Use the 5 rectangles shown in Fig. 14.1 and the information in Fig. 14.2 to show that a lower bound for \(\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + x ^ { 2 } } \mathrm { dx }\) is 0.7337, correct to \(\mathbf { 4 }\) decimal places.
    [0pt] [2]
  2. Use the 5 rectangles shown in Fig. 14.1 and the information in Fig. 14.2 to calculate an upper bound for \(\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + x ^ { 2 } } \mathrm {~d} x\) correct to \(\mathbf { 4 }\) decimal places.
    [0pt] [2]
  3. Hence find the length of the interval in which your answers to parts (a) and (b) indicate the value of \(\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + x ^ { 2 } } \mathrm {~d} x\) lies.
    [0pt] [1] Amit uses \(n\) rectangles, each of width \(\frac { 1 } { n }\), to calculate upper and lower bounds for \(\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + x ^ { 2 } } \mathrm {~d} x\), using different values of \(n\). His results are shown in Fig. 14.3.
    \(n\)102040
    upper bound0.809980.797790.79162
    lower bound0.759980.772790.77912
    \section*{Fig. 14.3}
  4. Find the length of the smallest interval in which Amit now knows \(\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + x ^ { 2 } } \mathrm { dx }\) lies.
  5. Without doing any calculation, explain how Amit could find a smaller interval which contains the value of \(\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + x ^ { 2 } } d x\).