7 The position vectors of the points \(A , B , C , D\) are
$$7 \mathbf { i } + 4 \mathbf { j } - \mathbf { k } , \quad 11 \mathbf { i } + 3 \mathbf { j } , \quad 2 \mathbf { i } + 6 \mathbf { j } + 3 \mathbf { k } , \quad 2 \mathbf { i } + 7 \mathbf { j } + \lambda \mathbf { k }$$
respectively.
- Given that the shortest distance between the line \(A B\) and the line \(C D\) is 3 , show that \(\lambda ^ { 2 } - 5 \lambda + 4 = 0\).
Let \(\Pi _ { 1 }\) be the plane \(A B D\) when \(\lambda = 1\).
Let \(\Pi _ { 2 }\) be the plane \(A B D\) when \(\lambda = 4\). - Write down an equation of \(\Pi _ { 1 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \mathbf { s b } + \mathbf { t c }\).
- Find an equation of \(\Pi _ { 2 }\), giving your answer in the form \(a x + b y + c z = d\).
- Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
If you use the following page to complete the answer to any question, the question number must be clearly shown.