7
\includegraphics[max width=\textwidth, alt={}, center]{7fc02f90-8f8b-4153-bba1-dc0807124e96-5_421_944_251_242}
The diagram shows a model for the roof of a toy building. The roof is in the form of a solid triangular prism \(A B C D E F\). The base \(A C F D\) of the roof is a horizontal rectangle, and the crosssection \(A B C\) of the roof is an isosceles triangle with \(A B = B C\).
The lengths of \(A C\) and \(C F\) are \(2 x \mathrm {~cm}\) and \(y \mathrm {~cm}\) respectively, and the height of \(B E\) above the base of the roof is \(x \mathrm {~cm}\).
The total surface area of the five faces of the roof is \(600 \mathrm {~cm} ^ { 2 }\) and the volume of the roof is \(V \mathrm {~cm} ^ { 3 }\).
- Show that \(V = k x \left( 300 - x ^ { 2 } \right)\), where \(k = \sqrt { a } + b\) and \(a\) and \(b\) are integers to be determined.
- Use differentiation to determine the value of \(x\) for which the volume of the roof is a maximum.
- Find the maximum volume of the roof. Give your answer in \(\mathrm { cm } ^ { 3 }\), correct to the nearest integer.
- Explain why, for this roof, \(x\) must be less than a certain value, which you should state.