Show that the equation \(2 \log _ { 2 } x = \log _ { 2 } ( k x - 1 ) + 3\), where \(k\) is a constant, can be expressed in the form \(x ^ { 2 } - 8 k x + 8 = 0\).
Given that the equation \(2 \log _ { 2 } x = \log _ { 2 } ( k x - 1 ) + 3\) has only one real root, find the value of this root.