Edexcel Paper 2 2022 June — Question 16

Exam BoardEdexcel
ModulePaper 2 (Paper 2)
Year2022
SessionJune
TopicParametric equations

16. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{824d73c5-525c-4876-ad66-33c8f1664277-44_742_673_248_696} \captionsetup{labelformat=empty} \caption{Figure 6}
\end{figure} Figure 6 shows a sketch of the curve \(C\) with parametric equations $$x = 2 \tan t + 1 \quad y = 2 \sec ^ { 2 } t + 3 \quad - \frac { \pi } { 4 } \leqslant t \leqslant \frac { \pi } { 3 }$$ The line \(l\) is the normal to \(C\) at the point \(P\) where \(t = \frac { \pi } { 4 }\)
  1. Using parametric differentiation, show that an equation for \(l\) is $$y = - \frac { 1 } { 2 } x + \frac { 17 } { 2 }$$
  2. Show that all points on \(C\) satisfy the equation $$y = \frac { 1 } { 2 } ( x - 1 ) ^ { 2 } + 5$$ The straight line with equation $$y = - \frac { 1 } { 2 } x + k \quad \text { where } k \text { is a constant }$$ intersects \(C\) at two distinct points.
  3. Find the range of possible values for \(k\).