| Exam Board | Edexcel |
| Module | PMT Mocks (PMT Mocks) |
| Topic | Standard Integrals and Reverse Chain Rule |
7. Given that \(k \in \mathbb { Z } ^ { + }\)
a. show that \(\int _ { 2 k } ^ { 3 k } \frac { 6 } { ( 7 k - 2 x ) } \mathrm { d } x\) is independent of \(k\),
b. show that \(\int _ { k } ^ { 2 k } \frac { 2 } { 3 ( 2 x - k ) ^ { 2 } } \mathrm {~d} x\) is inversely proportional to \(k\).