Edexcel AS Paper 1 2024 June — Question 12

Exam BoardEdexcel
ModuleAS Paper 1 (AS Paper 1)
Year2024
SessionJune
TopicDifferentiation Applications
TypeOptimization with constraints

12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{23689deb-7eed-4022-848f-1278231a4056-34_494_499_306_778} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows the plan view of the design for a swimming pool.
The pool is modelled as a quarter of a circle joined to two equal sized rectangles as shown. Given that
  • the quarter circle has radius \(x\) metres
  • the rectangles each have length \(x\) metres and width \(y\) metres
  • the total surface area of the swimming pool is \(100 \mathrm {~m} ^ { 2 }\)
    1. show that, according to the model, the perimeter \(P\) metres of the swimming pool is given by
$$P = 2 x + \frac { 200 } { x }$$
  • Use calculus to find the value of \(x\) for which \(P\) has a stationary value.
  • Prove, by further calculus, that this value of \(x\) gives a minimum value for \(P\) Access to the pool is by side \(A B\) shown in Figure 5.
    Given that \(A B\) must be at least one metre,
  • determine, according to the model, whether the swimming pool with the minimum perimeter would be suitable.